Towards Simple, Easy-to-Understand, yet Accurate Classifiers
نویسندگان
چکیده
We design a method for weighting linear support vector machine classifiers or random hyperplanes, to obtain classifiers whose accuracy is comparable to the accuracy of a non-linear support vector machine classifier, and whose results can be readily visualized. We conduct a simulation study to examine how our weighted linear classifiers behave in the presence of known structure. The results show that the weighted linear classifiers might perform well compared to the non-linear support vector machine classifiers, while they are more readily interpretable than the non-linear clas-
منابع مشابه
280 Birds with One Stone: Inducing Multilingual Taxonomies from Wikipedia using Character-level Classification
We propose a simple, yet effective, approach towards inducing multilingual taxonomies from Wikipedia. Given an English taxonomy, our approach leverages the interlanguage links of Wikipedia followed by character-level classifiers to induce high-precision, high-coverage taxonomies in other languages. Through experiments, we demonstrate that our approach significantly outperforms the stateof-the-a...
متن کاملLearning Sparse Perceptrons
We introduce a new algorithm designed to learn sparse perceptrons over input representations which include high-order features. Our algorithm, which is based on a hypothesis-boosting method, is able to PAC-learn a relatively natural class of target concepts. Moreover, the algorithm appears to work well in practice: on a set of three problem domains, the algorithm produces classifiers that utili...
متن کاملTargeting Business Users with Decision Table Classifiers
Business users and analysts commonly use spreadsheets and 2D plots to analyze and understand their data. On-line Analytical Processing (OLAP) provides these users with added flexibility in pivoting data around different attributes and drilling up and down the multi-dimensional cube of aggregations. Machine learning researchers, however, have concentrated on hypothesis spaces that are foreign to...
متن کاملRule Induction for Classification Using Multi-objective Genetic Programming
Multi-objective metaheuristics have previously been applied to partial classification, where the objective is to produce simple, easy to understand rules that describe subsets of a class of interest. While this provides a useful aid in descriptive data mining, it is difficult to see how the rules produced can be combined usefully to make a predictive classifier. This paper describes how, by usi...
متن کاملA simple approach to multiple attribute decision making using loss functions
Multiple attribute decision making (MADM) methods are very much essential in all fields of engineering, management and other areas where limited alternatives exist and the decision maker has to select the best alternative. Different methods are available in the literature to tackle the MADM problems. The MADM problems are classified as scoring methods, compromising methods and concordance metho...
متن کامل